
 
AFRL-RY-WP-TR-2015-0041 

 
 

UNCERTAINTY PROPAGATION AND THE FANO 
BASED INFORMATION THEORETIC METHOD 
A Radar Example 
 
 
John A. Malas and Patricia A. Ryan 
 

Radio Frequency Exploitation Branch 
Layered Sensing Exploitation Division 
 
John A. Cortese 
 

Massachusetts Institute of Technology, Lincoln Laboratory  
 
 
 
 
 

FEBRUARY 2015 
Final Report  
 
 
 

 
Approved for public release; distribution unlimited. 

 
See additional restrictions described on inside pages  

 

 
 

STINFO COPY 
 
 

AIR FORCE RESEARCH LABORATORY 
SENSORS DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH  45433-7320 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE 



 
NOTICE AND SIGNATURE PAGE 

 
 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or permission to 
manufacture, use, or sell any patented invention that may relate to them.  
 
This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public 
Affairs Office (PAO) and is available to the general public, including foreign nationals. Copies may 
be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).  
 
AFRL-RY-WP-TR-2015-0041 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
 
 
 
//Signature//      //Signature// 

JOHN MALAS           JEFFREY SANDERS, Chief 
Program Manager, Lead Researcher  RF Exploitation Branch 
RF Exploitation Branch  Layered Sensing Exploitation Division 
Layered Sensing Exploitation Division  
 
 
 
 
 
//Signature//  
JACQUILINE BARKER 
Division Chief 
Layered Sensing Exploitation Division 
Sensors Directorate  
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 
 
*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

February 2015 Final 11 January 2010 – 26 October 2012 
4.  TITLE AND SUBTITLE 

UNCERTAINTY PROPAGATION AND THE FANO BASED INFORMATION 
THEORETIC METHOD 

5a.  CONTRACT NUMBER 
In-house 

5b.  GRANT NUMBER  

5c.  PROGRAM ELEMENT NUMBER 
N/A 

6.  AUTHOR(S) 

John A. Malas and Patricia A. Ryan,  (AFRL/RYAP) 
John A. Cortese,  MIT Lincoln Laboratory 

5d.  PROJECT NUMBER 
10RY08C0R 

5e.  TASK NUMBER 
N/A 

5f.  WORK UNIT NUMBER 

  N/A 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 

     REPORT NUMBER 
Radio Frequency Exploitation Branch 
Layered Sensing Exploitation Division 
Air Force Research Laboratory, Sensors 
Directorate 
Wright-Patterson Air Force Base, OH 
45433-7320 
Air Force Materiel Command, United 
States Air Force 

Massachusetts Institute of Technology 
Lincoln Laboratory 
244 Wood Street 
Lexington, MA 02420-9108 

AFRL-RY-WP-TR-2015-0041 

9.   SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING 
       AGENCY ACRONYM(S) 

Air Force Research Laboratory 
Sensors Directorate 
Wright-Patterson Air Force Base, OH 
45433-7320 
Air Force Materiel Command 
United States Air Force 

Air Force Office of Scientific Research 
AFOSR/RSE 
875 North Randolph Street, Suite 325, 
Room 3112 
Arlington, VA 22203-1768 

AFRL/RYAP 
11.  SPONSORING/MONITORING 
       AGENCY REPORT NUMBER(S) 
 AFRL-RY-WP-TR-2015-0041 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13.  SUPPLEMENTARY NOTES 
The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display or 
disclose the work. PAO case number 88ABW-2013-0274, Clearance Date 23 Jan 2013.  Report contains color. 

14.  ABSTRACT 
This report contains work performed under AFOSR Lab Task 10RY08C0R. The Fano equality is joined with the data-
processing inequality to develop a theory model for component level trade studies within radar signature exploitation 
systems. Entropy is used to represent propagating uncertainty within an information channel. Measures are developed to 
identify information flow bottlenecks within an information loss budget. The propagating effects of various sources of 
uncertainty on system performance are characterized. Numerical computation of entropic estimates on high dimensional 
signature processes are explored for risk-based design methods.  Methods are demonstrated on a radar example. 

15.  SUBJECT TERMS  
information theory, radar, uncertainty, systems modeling, information sensing, target recognition 

16.  SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT: 

SAR 

8.  NUMBER OF 
PAGES 
    76 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

         John Malas 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A 
 Standard Form 298 (Rev. 8-98)         

Prescribed by ANSI Std. Z39-18 

 
 



Table of Contents 
1. INTRODUCTION ..................................................................................................................... 1

1.1  Case for Information Theoretic ............................................................................................................. 1 
1.2 Historical Contributions ......................................................................................................................... 3 

2. APPROACH .............................................................................................................................. 6
2.1 Systems Theory Model ........................................................................................................................... 6 
2.2 Addressing Dimensionality .................................................................................................................... 6 
2.3 Uncertainty Analysis .............................................................................................................................. 7 

3. THEORY .................................................................................................................................... 8
3.1 Uncertainty Sources within an Information Sensing System and the Decision Rule Subspace ............ 8 
3.2 Sensing Uncertainty Example .......................................................................................................... 9 
3.3 Uncertainty and the Decision Rule Subspace................................................................................. 11 
3.4 Information Theoretic Decision Rule Subspace ............................................................................. 11 
3.5 Information Theoretic Radar Channel Model ................................................................................ 12 
3.6 Fano Based Information Theoretic Method (FBIT) ....................................................................... 14 
3.7 Uncertainty in the Information Channel ......................................................................................... 18 

3.7.1 Categories of Uncertainty ........................................................................................................... 18 
3.7.2 Propagating Effects of Uncertainty ............................................................................................ 21 

3.8 Uncertainty in Performance ........................................................................................................... 29 
3.8.1 Stability of the Linear Approximation ....................................................................................... 31 

3.9 Dimensionality and Computing ..................................................................................................... 32 
3.9.1 Sample Size ................................................................................................................................ 34 
3.9.2 Phase Transitions and the Typical Set ........................................................................................ 35 

3.10 Sampling Uncertainty for Probability of Error Estimate................................................................ 38 
3.11 Sampling Uncertainty versus Variability in Performance .............................................................. 40 

4 AN INFORMATION FLOW NUMERICAL EXAMPLE .............................................. 42 

4.2 Observed Target Scattering Model ................................................................................................ 42 
4.3 Radar Sensor Model ....................................................................................................................... 44 

4.3.1 Modeling Pose Angle Estimation Uncertainty ........................................................................... 45 
4.3.2 Modeling Leading Edge Position Estimation Uncertainty ......................................................... 45 
4.3.3 Modeling Imperfect Training ..................................................................................................... 46 

4.4 Feature Discrimant and Decision Rule Design .............................................................................. 46 
4.5 Certainty States .............................................................................................................................. 48 
4.6 Sampling and FBIT Analysis ......................................................................................................... 49 

4.6.1 Signature Ensembles .................................................................................................................. 49 
4.6.2 Sampling Uncertainty Example ................................................................................................. 51 
4.6.3 The Fano Equality ...................................................................................................................... 56 

5 EXPERIMENTS .................................................................................................................. 57 

5.2 Research Hypotheses ...................................................................................................................... 57 
5.3 Experiments .................................................................................................................................... 57 

5.3.1 Information Flow and Design Trades within the Radar Channel ............................................... 58 

i 

Approved for public release; distribution unlimited. 



 
5.3.2 Information Flow and System Uncertainty ................................................................................ 62 

6 CONCLUSION .................................................................................................................... 67 

7 REFERENCES .................................................................................................................... 68 

8 AUTHOR BIBLIOGRAPHIES ......................................................................................... 70 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii 

Approved for public release; distribution unlimited. 



 

 

1. INTRODUCTION 

nnovations in sensing component technology are spurring new research in the area of target 

signature measurement and exploitation.   Innovations include multi-channel spatially diverse 

antennas, sensitive receivers, fast analog-to-digital converters, adaptive transmit waveforms, 

and sparse sampling approaches.  These innovations support new signature information sensing 

functions including calibrated target measurements, feature processing, and inference based 

decision algorithms.  The ability to characterize information extraction while under the effects of 

system uncertainties is critical to risk based design methods.  The use of existing systems theory 

prototypes such as the radar range equation is inadequate to fully characterize the flow of 

information through the sensing system.   

 

The success of any theory model in the above context will largely depend on its ability to 

address several challenges; (1) ability to characterize information gain and performance within 

various stages of the system, (2) propagate the effects of these uncertainty sources acting on 

individual components within the system to the predicted system performance measures, (3) 

effectively minimize the overall loss in the information flow while trading costs associated with 

component design, and (4) operate effectively within the nonlinear high dimensional spaces 

inherent in signature sensor systems. 

 

1.1  Case for Information Theoretic 

The use of information theoretic principles affords several advantages in dealing with the 

challenges in the information sensing and exploitation areas.  First, information theory 

prototypes enable the study of the propagating effects of uncertainty on system performance at 

the various points of noise infiltration.  Using Fano’s inequality, the max flow [1] criteria bounds 

the optimal Bayes error.   Entropy and mutual information (MI) are analytically connected to the 

probability of error (Pe) and more generally the Neyman Pearson criteria allowing for the rate of 

I 
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noise infiltration to be related to the rate of entropy growth and ultimately to the rate of 

degradation system performance.  The information loss associated with uncertainty sources can 

then be characterized in terms of a confidence interval about the predicted system performance at 

each component of the system.  The data processing inequality affords a method to determine 

information loss points and maximize information flow via component trades within a system 

information loss budget. 

 

Second, the convexity of mutual information yields a unique solution and enables rapid 

numerical convergence (low computational complexity) to maximum MI configurations [2], [3].   

MI affords the optimization of a scalar quantity while classical Bayes likelihood ratio techniques 

can involve optimizing on non-convex surfaces over high dimensional signature spaces.  On a 

convex surface, the use of highly efficient search algorithms such as the Conjugate Gradient 

method will converge on the order of N operations (N dimensional problem).  While entropy 

based methods operate non-parametrically such that the probability does not have to be 

estimated, complicating factors can include numerical computation issues that occur within high 

dimensional processes (Bellman’s Curse of Dimensionality).  It can be shown however [4] that 

computing the entropy of the multivariate sensor signature processes is also O(N).  As a 

consequence of the law of large numbers, the asymptotic equipartition property asserts that there 

are large regions within the entropic signature subspace which will never occur under the 

decision hypotheses [2].  Thus, the information theoretic approach holds the potential to exploit 

entropy based methods operating within this “typical” signature subspace.  

 

    Third, classical statistical pattern recognition approaches use the maximum likelihood (ML) 

decision criteria which include only the 2nd order statistics present in the training process.  The 

use of MI in nonlinear processing affords advantages over linear processing in that it accounts 

for higher-order statistics within the design of nonlinear optimal decision rules and in the 

optimization of features.  Nonlinear scattering phenomenon resulting from the interaction of 

individual target mechanisms can also reduce the effectiveness of second order techniques [5] in 

the optimization of diverse transmit waveforms.  The use of MI as a nonlinear signal processing 

2 
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method for optimizing waveform design will address this phenomenon.  It is these inherent 

benefits that distinguish the information theoretic approach over traditional statistical pattern 

recognition methods. 

 

1.2 Historical Contributions 

The use of information theory in the area of radar dates back to the early 1950s.  Woodward 

and Davies [6] and Woodward [7] were the first to apply the information theoretic approach to 

the analysis of radar soon after the appearance of Shannon’s original work [8] on information 

theory.  More recently Bell [9] has suggested the use of an information theoretic approach to the 

design of radar waveforms.  Dr. Bell formulated and obtained a solution to the problem of 

designing a waveform that maximized the MI between the target impulse response (viewed as a 

random process) and the received signal.  Recently, Leshem et al. [10] extended Bell’s work to 

the case of multiple extended targets.  Sowelam and Tewfik [11] also used waveform design in 

conjunction with the Kullback-Liebler [12] criterion to distinguish between different target 

classes.  Briles [13] applied rate distortion theory to analyze impulse radar for use in target 

identification design and performance prediction.    Horne and Malvern [14] introduce a high 

level theoretical framework to calculate the information conveyed by the image of a target based 

on pixel values relative to the modeled fluctuations of these values.  Principe, Xu, Zhao, and 

Fisher [15] present a framework for learning based on information theoretic criteria and have 

studied the application of the Fano bound to the ATR problem set.  Methods such as the 

maximum likelihood test have been used to evaluate radar signature processes for target 

classification performance as in the work by O’Sullivan et al [16].  This framework proposes 

several approximations to the Kulback-Leibler divergence that can be used to estimate statistical 

distances compatible with pattern matching algorithms.  Pasala and Malas [17] introduce the use 

of MI as a similarity measure for use in the evaluation of suitability of radar signature training 

surrogates.  Recently, there has been much interest in radars with a new architecture referred to 

as the MIMO (Multiple Input Multiple Output) radar [18] – [21].  It is the information theoretic 

approach that unifies the analysis of these radar systems.   
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Several contributions within the body of existing referenced work including [9] and [13] have 

(in one form or another) presented the radar system in terms of a Markov Chain within a channel 

configuration and characterized the information flow from source to sink. Tishby [22] has 

developed the information bottleneck approach, wherein rate-distortion theory, the Data 

Processing Theorem, and compression play major roles.  The max-flow min-cut application to 

the channel problem has been studied to understand the relationship of capacity to information 

flow [23].   Ahlswede and Yeung  [1] have extended this analysis to network information flow 

where a single information source is multicast to multiple destinations.  B. C. Geiger et-al [24] 

have studied the information loss induced by static nonlinearities within a memoryless nonlinear 

input-output system and conclude that a particular output can result from multiple inputs.  

Merhav [25] have published a series of works on information measures with application to 

estimation theory.  While this work is thematically similar to the work herein, the author has 

used a different theoretical approach to the study of information theory and decision theory.   

 

The area of uncertainty modeling and sensitivity analysis is wide ranging drawing upon the 

established fields such as the design of experiments [26] and classical engineering methods of 

statistics that lead to uncertainty measures [27].  The subject of propagation of uncertainty has 

been firmly established within traditional methods of Taylor Series expansion and differential 

calculus [28].  Recently, advances in large scale computer simulation have opened the door to 

modeling complex physical processes in lieu of expensive physical experiments [29].    The 

methods by Saltelli et al. [30] present new Monte-Carlo Methods for the study of sensitivity.  

 

A significant contribution of the research reported to the existing body of work is the 

development and demonstration of a systems theory model for the study of the effects of 

uncertainty on the information flow within the various components of the sensor system.  Fano’s 

equality is developed in a mathematically concise form.  The Fano’s equality is joined with the 

data-processing inequality to address nonlinear paradigms in sensing.  While not new n the 

literature, the unified use of the Fano equality with the Data Processing inequality in a 

Markovian channel construct is a center piece of this work.  An abbreviated and preliminary 
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treatment of this concept is presented in [31].  Entropy is used to model propagating uncertainty 

within an information channel. Measures are developed to identify information flow bottlenecks.  

The mathematical framework for an information theoretic approach to estimation and hypothesis 

testing is applied to a multidisciplinary problem set.  Techniques for bounding asymptotic 

performance under sufficient statistics are characterized and related to phase transitions within 

the typical set trajectory associated with sampling uncertainty.  Nonparametric performance 

estimations are developed at various points in the information sensing pipeline.  Minimum 

sampling requirements for performance prediction are developed on high dimensional signature 

processes based on low sample entropic estimates. 
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2. Approach 

2.1 Systems Theory Model 

 
Taking an information theoretic view, degrading effects are considered as sources of entropy.  

Treating the system as an information flow pipeline from input to output, the injective entropy 

acts to degrade the Shannon MI between the input and output.  The systems model is 

demonstrated as a suitable vehicle for performing component level design trades within the 

information sensing application based on a component level information loss budget (Bits).  

Demonstration of the max flow in conjunction with the Data Processing Inequality provides 

analysis of “bottlenecks” in the information flow pipeline.  Key attributes of the theoretical 

model have been demonstrated under the constraints of a radar high range resolution sensor 

system example.  Modeling and simulation for simplified target scattering models are used to 

illustrate the value of component level analysis under the propagating effects of various sources 

of uncertainty.   
 

2.2 Addressing Dimensionality 

Interdependencies among multivariate target signatures can significantly impede information 

extraction.  The number of samples required to estimate the underlying signature statistics is 

related to the incremental increases in uncertainty.  Baseline statistical sample requirements (in 

the native coordinate system) associated with the resolved radio frequency target scattering are 

characterized for specified states of certainty.  Methods are developed that estimate the sampling 

requirements for entropic quantities based on a characterization of the typical set underlying the 

sufficient statistics of the random signature process.  The variance of the performance estimate 

associated with low sample count Monte-Carlo experiments can be scaled (via central limit 

theorem) to the estimate the performance variance associated with higher sample counts.   
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2.3 Uncertainty Analysis 

Both sensor uncertainty and model training uncertainty are propagated into the classifier where 

uncertain decisions are inferred from uncertain observations.  The uncertainty (increase in 

entropy) is ultimately realized in the form of confidence or reliability intervals about the 

estimated system performance.  Mathematically defined categories of uncertainty are developed 

to better understand the entropic effects within the information sensing system.  A sensitivity 

analysis is performed to study the relative significance of various “unknown” operating 

conditions to the reliability of the performance estimate at each component of the system.  The 

effects of sampling uncertainty are contrasted to reliability of performance estimates.  This 

comparison forms the basis for the study of the variance effects in performance estimation within 

high dimensional signature processes subject to unknown operating conditions.   
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3. THEORY 

3.1 Uncertainty Sources within an Information Sensing System and the Decision 

Rule Subspace 

It is important to contrast the proposed concept of uncertainty with several terms generally 

used by the measurement community [32].  Accuracy refers to the agreement between a 

measurement and the true or correct value.  Precision refers to the repeatability of a 

measurement.  Error refers to the disagreement between a measurement and the true or accepted 

value.  The uncertainty in a stated measurement is the interval of confidence around the 

measured value such that the measured value is expected not to lie outside this stated interval.  

The use of the term “uncertainty” implies that the true value may not be known and can be stated 

along with a probability.  These definitions recognize the deterministic nature of error and the 

stochastic nature of uncertainty.  However, uncertainty as currently defined by the sensor 

measurement community may not be sufficient to address the full range of issues under study 

within an information sensing system.    

 

Modern sensing systems produce signature measurements that when combined with the effects 

of various system uncertainties are realized as a random signature process.  Conclusions are 

inferred by applying instances taken from this random measured signature process to a decision 

rule.  The “unknowable” nature of parameters affecting the measured signature process leads to 

challenges in developing a signature process model that will generate an optimal decision rule 

for inferring information.  The combined effects of these sensing and training uncertainties limit 

the exploitation of physics-based features and result in a loss in information that can be extracted 

from target signature measurements.  The resulting decision uncertainty is then driven by both 

the distorted measurements and the degree of agreement between the signature process under 

measurement and the process used to train the optimal decision rule.  
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3.2  Sensing Uncertainty Example 

It is helpful to illustrate the concepts surrounding uncertainty through the use of a real world 

example.  A related problem of interest is the measurement of airborne moving objects using 

high range resolution (HRR) waveforms.  The successful extraction of information from these 

measurements via a specific system design is complicated by several sources of uncertainty. The 

two general classes of system uncertainty introduced above are given in Table I as “Sensing” 

 uncertainty and uncertainty resulting from “Decision Rule Training Limitations”.  Sensing 

uncertainty is divided into three subcategories (a) signature measurement uncertainty due to 

sensor design/limitations, (b) the uncertainty due to interference, and (c) object tracking position 

and motion uncertainty. 

 

The object under measurement by the sensing radar system can be viewed as a collection of 

scattered field sources filling an electrically large volume in space.  The system measurement of 

this object is subject to uncertainty identified in source 1.a generating the statistical support 

underlying a random signature process at a fixed position in time. Target fixed body motion 

within the measurement interval induces scintillation within the scattering sources resulting in an 

additional increase in entropy.  Imperfect knowledge of target position, velocity, and aspect also 

alters the statistical characterization of the random signature process (source 1.c).  The random 

signature process also interacts with an external environment (source 1.b) to further impact the 

statistical nature of the measured signature process.   
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TABLE 1                                                                                                                                                                                                                                                                                
RADAR SYSTEM UNCERTAINTY SOURCES 

Uncertainty Core 
Area Parameter Uncertainty Subcategory 

1. Sensing 

Non-linear 
Effects 

I&Q 
Quantization/ 

Clipping 

Amplitude & 
Phase 

Calibration 

a. Signature 
Measurement* 

b.Environmental Clutter/Therm
al Noise 

RF 
Interference Jamming 

c. Object 
Tracking & 
Motion 

Object Range, 
Velocity, & 

Aspect 
Estimates 

Object 
Articulation 

Intra-
measurement 

Motion 

2. Decision Rule 
Training 
Limitations 

Process Under 
Sampling* 

Target 
Configuration 

Variation 

Target 
Modeling 

Parameters 
* Epistemic Uncertainty 

 

The exploitation of this signature process using a decision algorithm requires the training1 of 

an optimal decision rule that operates within the entropy produced by sources 1.a, 1.b, and 1.c.   

Only a subset of the phenomenon (parameters) underlying source 1 can be modeled and/or 

characterized within the statistical decision rule training process.  Limitations within the training 

process result in a decision rule design that is less than optimal with respect to system 

performance.   

 

Sources of uncertainty that arise because of natural, unpredictable variation within the system 

under are aleatoric and are considered “unknowable”.  Source 1 uncertainties are aleatoric in 

nature and as such can only be characterized statistically.    Uncertainties that are conceptually 

resolvable yet subject to systematic limitations are epistemic and are to be reduced as much as 

possible within the analysis.  The performance resulting solely from signature measurement 

uncertainty source 1.a (highest system certainty state) is defined here as epistemic in nature and 

in general can be modeled and characterized.   Sources 1.b, 1.c, and 2 are in general aleatoric and 

can result in a reduction in certainty from the highest certainty state.   

 

1 Supervised learning assumed as the classification training approach. 
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3.3 Uncertainty and the Decision Rule Subspace 

The sources of uncertainty associated with source 2 in Table I are traceable to the 

corresponding effects within the decision rule subspace in the classical statistical pattern 

recognition approach to the binary hypothesis testing.  The decision rule design (decision 

threshold d) is based on the statistical training support resulting from the uncertainties in Table I.  

If the sensing uncertainties within source 1 are adequately represented in the statistics of the 

training process, the decision rule design should provide optimal performance.  The effects due 

to many of the uncertainties in Table I are unavoidable.  For example, target signature 

realizations are often formed through the integration of many sequential measurements.  Intra-

measurement object motion can cause distortion and induce uncertainty in the decision rule 

subspace that is not accounted for in the decision rule training process.   In another example, the 

object under measurement may be configured differently than that represented in the training 

data (extra fuel tanks, wing flaps up, or damaged surface for example).   

 

3.4 Information Theoretic Decision Rule Subspace 

An alternative to the classic statistical pattern recognition approach to viewing the decision 

rule subspace is shown in Fig. 1.  In Fig. 1, the decision rule subspace is cast in terms of 

information theoretic quantities based on entropy; a measure of the size of a typical set [2].  In 

Fig. 1, information is defined in terms of the MI between the “typical subspaces” [2] associated 

with the true object state H and the decision state Q where H and Q are discrete random 

variables.  Systems (and associated sub-component) designs that increase the MI between these 

“typical signature subspaces” increase the flow of information.   “Uncertainty” acts to alter to the 

typical signature subspaces (growth or movement) associated with the highest certainty state.  A 

change to the typical subspaces can result in a loss in the flow of information and a decrease in 

decision performance.   
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Fig. 1. Decision Rule Subspace and the Overlapping Typical Sets                                                                                       
 *Modified version of Figure 2.2, [2] 

 

3.5 Information Theoretic Radar Channel Model 

The concept of uncertainty introduced in Fig. 1 can be realized in terms of an increase in 

entropy within a discreet memoryless information channel.  The radar information sensing 

system can be viewed within this channel model depicting the information flow through the 

signature sensing and processing components of a radar system as shown in Fig. 2 [2], [33].     

 

 

Fig. 2. Information Theoretic Sensor Channel Model 

 

The relationship between H and Q is the basis chosen for performance characterization.  The 

discrete random variable H represents which of the Nc possible hypotheses has occurred. Q is of 

the same alphabet as H.  Successful flow of information results in agreement between H and Q.   
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Conditioned on the generating hypothesis H (instance of H), there is typically a 

multidimensional encoded source2
EX


which is realized as the image projection of the scattered 

field of the object under measurement.  In the case of an HRR radar measurement, this is the 

band-limited frequency response associated with the scattered field of the observed object in 

thermal noise.   After mixing, filtering, and signal processing, these returns become the measured 

random signature vector nX


.   The sensing of nX


 is subjected to the uncertainties listed in source 

1 of Table I leading to the random signature process X


.  The various cases of the sensed signature 

are summarized in Table II.  

TABLE II  

SENSOR MEASUREMENT SIGNAL CASES 

Encoded Deterministic Multivariate Signal EX
  

Deterministic Signal in Additive Noise nX


+= EXn
 

Random Multivariate Signal in Additive Noise nXX


+= E  

 

The multivariate sample feature iY


 is extracted from the ith instance test sample iX


 to support 

the desired function of the exploitation system.  Given the random nature of X


, the extracted 

signature feature Y


is also random.  The training feature process 'Y


 is developed from the set of 

typical signatures within the decision rule training process 'X


.  'X


 (and thus 'Y


) is developed 

offline using a surrogate process and is used to determine the ‘optimal’ decision rule d.  The 

decision algorithm applies iY


to the decision rule d yielding the decision Q (instance of Q) 

declaring which of the hypothesis has occurred.  The evaluation of an ensemble NM of test 

samples iX


{i=1→ NM} produces the sample ensemble of the NM matching tests (H,Q) to 

statistically characterize the decision performance.  
 

2 EX


in this context is deterministic resulting from the convolution of the target’s physical scattering mechanisms with the 
transmitted waveform s.  Given the “unknowable” nature of this code through measurement or modeling, the code itself is only 
observable in the random form of X


. 
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3.6 Fano Based Information Theoretic Method (FBIT) 

It is desired to quantify the effects of “uncertainty” and the associated alteration to the typical 

signature subspaces in terms of the flow of information and the impact to system performance.   

Two theorems from information theory play key roles in the development of these relationships.  

Fano’s Inequality relates information theoretic quantities to the Pe criterion for an object 

classification system [2].  The Data Processing Inequality [2] affords the analysis of the flow of 

information from measured object returns through the signature sensing, signal processing 

architecture, and into the decision stage; detailing where information is lost, and quantifying the 

impact on system performance. In this manner, stages in the information processing pipeline 

where information is lost can be identified, analyzed and optimized, leading to improvement in 

overall system performance. 

 

Fano’s inequality provides a mathematical means to relate the MI between H and Q, I(H;Q), to 

a lower bound on Pe .  Fano’s inequality [2] can be written as an equality as in (1). 

 

H(Pe) = δ - Pe ⋅ log(Nc-1)+ H(H/Q)             (1) 

 

In (1), Pe is a real random variable between 0 and .5 representing the probability of error of the 

decision algorithm. Nc is the discrete size of the alphabet of H and Q.  H(H) is the Shannon 

entropy of the discrete random variable H.  δ is a bias offset derived from asymmetries in the 

data and decision algorithm [32].  Typically δ is small and to a first approximation may be 

neglected.   

 

 

Theorem I: For Nc = 2, Fano’s equality can be written as H(Pe) = 1- I(H;Q)+ I(Q;V)  where 

V is the binary discrete random variable representing the probability that the decision rule 

makes a correct decision.                      

 

 Proof Sketch: Using I(H;Q) = H(H) – H(H/Q) and (1) we get (2) below. 

14 

Approved for public release; distribution unlimited. 



 

 

 H(Pe) = δ - Pe ⋅ log(Nc -1)+ H(H) - I(H;Q)     (2) 

 

The asymmetry factor in (2) can be computed directly from the output of the decision 

algorithm.  Let =δ I(Q;V) for Nc = 2; where V is the binary discrete random variable 

representing the probability that the decision rule makes a correct decision.  V = 1 when H 
= Q; otherwise V = 0. Equation (2) can then be written more completely for Nc = 2 as in 

(3) below [32]. 

H(Pe) = 1- I(H;Q)+ I(Q;V)     (3) 

 
Equation (3) can be written in terms of the inverse entropy function F as shown in (4). 

 

Pe = F(H(H) – I(H;Q) + I(Q;V)     (4) 

 

F is a deterministic strictly monotonically increasing function that maps information theoretic 

quantities into the Pe at the corresponding operating point.  The relationship of Pe to F(x) where 

x ∈  [0, ½] is given Fig. 3.  

 

Fig. 3. The Binary Entropy Function, Bits 

 

The quantity ILQ in (5) is the end to end information loss for the system. 
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 ILQ = H(H) – I(H;Q)             (5)  

 

Minimizing the information loss minimizes the system Pe.  

 

The entropic quantity H(H) is determined by the a priori probabilities of the outcomes of the 

random variable H corresponding to the different target classes.  δ is fixed by architectural 

considerations.  Since F is a known function, the deterministic relation Pe = F(H(H) – I(H;Q) + 

I(Q;V) ), for fixed H(H) and δ, determines the MI (I(H;Q)) needed to achieve a specified Pe.  

For example, for an equiprobable binary hypothesis scenario3, H(H) = 1 Bit and I(Q;V) ≈ 0, an 

approximation for Pe can be written as  

 

Pe ≈ F(1 – I(H;Q)).       (6) 

  

Specifying a desired Pe determines the amount of allowed ILQ.  How the ILQ budget is “spent” as 

information cascades from the input space at H to the classifier output space at Q can be traded 

off via component (link) design.  Fig. 4 presents an abstract diagram indicating possible 

tradeoffs. Information losses within the channel can be studied with respect to various sources of 

uncertainty in Table I.   

 

 

 

 

 

 

Fig. 4. Example of Trading System Component Level  

Design for Information in Bits [33] 
 

3  The selection of the uniform prior on H is for illustration purposes and without loss of generality. 

Output of classifier (Q) 

Input hypothesis (H) 
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The Data Processing Inequality states that information can only be lost in the channel as shown 

in (7).   

I(H; X


) ≥ I(H; Y


) ≥ I(H;Q)      (7) 

Using the relationship in (5) and (4) the loss associated with each link within the channel can be 

characterized as in (8).   

H(H) – I(H; X


)  ≤ H(H) – I(H; Y


)  ≤  H(H) – I(H;Q).  (8) 

 

The cumulative information loss at each link in the channel can then be written as below 

applying (5).  

ILX
  =  H(H) – I(H; X


);  χ∈X

             (9.a) 

IL Y
 = H(H) – I(H; Y


); Y∈Y

      (9.b)  

 ILQ = H(H) – I(H;Q);                                                               (9c)  

 

The respective information loss due to each link within the Markov chain H→X→Y→Q can 

then be defined as in equations (10a-10c). 

                  Loss due to Sensing≡  ILS∆ =  H(H) – I(H; X


)                  (10.a)  

Loss due to Feature Extraction ≡  ILF∆ =  I(H; X


) - I(H; Y


)       (10.b)  

Loss due to Decision Rule≡  ILD∆ =  I(H; Y


) - I(H;Q)       (10.c)    

                                 

Thus, the probability of error can be estimated at various points in the channel using the 

approximation in (6); 

 

 Pe
X ≈  F(H(H) – I(H; X


)                   (11.a) 

Pe
Y ≈  F(H(H) – I(H; Y


)                               (11.b) 
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 Pe
Q ≈  F(H(H) – I(H;Q).                (11.c) 

 

3.7 Uncertainty in the Information Channel 

From (2) we see that sources of uncertainty introduced in the channel can result in a reduction 

in I(H;Q) and subsequently an increase in Pe.   A decrease in I(H;Q) is always accompanied by 

an increase in H(Pe) resulting in a degradation to the realized Pe . 

 

3.7.1 Categories of Uncertainty 

It is important to distinguish between the two distinct categories of uncertainty in Table I. The 

source 1 uncertainty results from sensing while the source 2 uncertainty results from decision 

rule training limitations  

 

3.7.1.1 Loss Due to Sensor Process 

The loss at X


 , ILS∆ , is due solely to the sensing process.  The sensing uncertainty inherently 

alters the statistics associated with nX


 generating statistical independence between nX


and X


thus 

degrading the performance of the signature sensing process as quantified by Pe
X in (11a).  The 

loss in information due to the sensor uncertainty is then realized at X


 as ILS∆ in (11a) and is 

quantified by the entropy H(Pe
X). 

 

H(Pe
X) ≈  H(H) – I(H; X


)      (12) 

 

3.7.1.2 Decision Uncertainty Loss 

The level of statistical agreement between X


 and 'X


 will directly affect the loss in the channel 

due solely to the decision process.  The sensing uncertainty sources in Table I are to some degree 

reproducible in the decision rule training process 'X


.   However, sources 1 (b) and 1 (c) in Table I 
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are not fully reproducible in 'X


.  The dissimilarity between X


 and 'X


 results in a decision rule d 

that is not optimal.  The application of d to the feature process Y


 induces a loss in the channel 

due to imperfect training.   

 

The effects of decision uncertainty within the decision rule subspace are realized at Q as ILD∆ 

as illustrated in Fig. 2.  The decision uncertainty ILD∆ can be interpreted in terms of the entropy 

H(Pe
Q) as in (13) and quantified as defined in (11.c). 

 

H(Pe
Q) ≈  H(H;Q) – H(Q).          (13) 

 

3.7.1.3 Training Uncertainty Loss 

The feature extraction f and decision rule d in Fig. 2 are designed to maximize I(H;Q).  The 

resulting H(Pe
Q) provides the best possible performance for a given component design  (radar 

sensor design, feature selection, algorithm design, and decision rule design).  As stated above, X


 

is often not completely observable, and a training surrogate 'X


 is used to develop f and d.  Under 

conditions such as those listed in uncertainty source 2 in Table I, the surrogate representation 'X


 

used in the training of the decision rule results in a non-optimal d.  This is represented by the 

altered entropic quantity H(Q’) and more importantly I(H;Q’).  The alternate Markov chain H 

X

 'Y


Q’ is shown as the dotted subspace H(Q’) in Fig. 1.  The corresponding form of (3) can 

then be written as  

H( 'eP )= 1- I(H;Q’)+ I(Q’;V)  

Therefore since H( '
eP ) ≥ H( eP ), 

 

I(H;Q’) - I(Q’;V)  ≤  I(H;Q) - I(Q;V). 
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Corollary I:  Information loss due to imperfect training, IL T∆ , is then mathematically 

quantified in terms of the increase in entropy ∆H( eP ) resulting from a non-optimal design of f 

and d.   

 

IL T∆  = ∆H( eP ) = H( '
eP ) - H( eP )               (14)                  

                             

             = -I(H;Q’) + I(Q’;V) + I(H;Q)- I(Q;V) 

 

If it can be shown that )I( VQ; ≅  I(Q’;V) and that   

 

I(Q;V) << H(H) - I(H;Q) and I(Q’;V) << H(H) - I(H;Q’) 

   then;  

Imperfect Training Loss≡  ILT∆  ≅  I(H;Q) - I(H;Q’).    (15)                     

 

The decrease in information flow due to imperfect training is illustrated in Fig. 1 as the 

reduction in overlap between the subspaces of H and Q.   

 

Definition I:   

The total loss in the channel is equal to the sum of all link loss components. 
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ILTotal = ILS∆ + ILF∆ + ILD∆ + ILT∆          (16) 

 

Definition II: Any phenomenon producing a increase in I(H;Q) and a subsequent 

reduction in H(Pe)  can be defined as a “system information  gain” within the information 

channel.  Any phenomenon producing a decrease in I(H;Q) resulting in an increase in 

H(Pe) is defined as a “system information loss”.   

 

3.7.2 Propagating Effects of Uncertainty  

Uncertainty propagation is the study of how uncertainty in the output of a model (numerical or 

otherwise) can be apportioned to different sources of uncertainty in the model inputs [30].  Fig. 5 

provides an illustration of a modeling and analysis approach to uncertainty propagation within 

the sensitivity analysis and modeling of an information sensing system [30].   
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Fig. 5. Parametric Bootstrap Uncertainty and Sensitivity Analysis 

 

The careful definition of variables plays a central role in case controlled studies of the effects 

of uncertainty on system performance.  The vector cv  represents the control parameters of 

interest within computer generated experiments.  Absent the uncertainties identified in Table I, 

the effects of selected values for cv on the deterministic mapping function Pe
X( cv ) in (11.a) are 

certain.  Further experimentation involving the unknowable random environmental ( EV


) and 

position ( tV


) estimation effects in sensing are best studied statistically.  Thus, the respective 

estimated random input parameters of EV


and tV


 are introduced resulting in the mapping to the 

random signature process X


( cv , EV


, tV


).  The sensing uncertainty is then subsequently propagated 

into the random feature process Y


( cv , EV


, tV


) and ultimately to the decision process Q( cv , EV


, tV


).   

For brevity, Y


( cv , EV


, tV


) is written as Y


and Q( cv , EV


, tV


) written as Q. 

 

The distributions associated with the input parameters in EV


and tV


 are estimated from 

experimental data.  The estimated parameters become factors within a Monte Carlo simulation.  
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The cumulative link information loss as quantified within (5) and defined in (9a), (9b), (9c), then 

become random variables as shown below.   

 

      ILX
  ≈  H(H) – I(H; X


( cv , EV


, tV

));                 (17.a) 

       IL Y
 ≈  H(H) – I(H; Y


( cv , EV


, tV

));           (17.b)  

       ILQ ≈  H(H) – I(H;Q ( cv , EV

, tV

))                        (17.c)            

 

Similarly, the link information loss ILS∆, ILF∆, and ILD∆ in (10.a), (10.b) and (10.c) also become 

random variables.  

 

The unknowable characteristics of the observed signature process X


 are realized within the 

input variables to the modeled training process 'X


( 'cv , 'EV
 , 'tV

 ).  If we assume that cc vv  ≠' ,

EE VV


≠' , 'tV


tV


≠ , then the mapping to the non-optimal decision rule will be d( 'cv , 'EV


, 'tV


) 

which will be written as d for brevity.  The decision rule d is applied to Y


( cv , EV


, tV


) generating 

Q’( 'cv , 'EV


, 'tV


) , written as Q’, while the optimal decision rule dopt generates Q( cv , EV


, tV


).  Each 

realization of d and dopt resulting from each ensemble 'X


( 'cv , 'EV


, 'tV


) and X


( cv , EV


, tV


) 

respectively in the Monte-Carlo simulation will result in the randomization of the imperfect 

training loss function in equation (18) 

 

    ILT∆ ≡  I(H;Q) -I(H;Q’)                        (18) 

 

and the randomization of the cumulative loss function in (19) 
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ILQ’ ≈  H(H) – I(H;Q’)           (19) 
 

In (19), the special case of 'EV


= EV


 and 'tV

= tV


, the loss due to the optimal training of d = dopt 

yields ILT∆ = 0 and thus ILQ’ = ILQ.  To narrow the focus of analysis, the training space ( 'cv ,

'EV


, 'tV

) will be considered fixed and thus will become a component of the system control 

parameter cv .  Therefore d becomes fixed by design as d. 

 

3.7.2.1  Independent Sources of Uncertainty Loss 

Loss due to isolated sources of uncertainty within the channel can be computed to provide a 

means to characterize the relative impacts to information flow at various points in the channel.  

The various sources of sensing uncertainty induce information loss in the channel as 

characterized by the random link loss functions ILS∆, ILF∆, ILD∆, and ILT∆.  The prior 

distributions on the random parameters within EV


 and tV


 are propagated to the respective loss 

functions using Monte Carlo simulation.   

 

Definition III: The expected value of the link information loss can be written as the 

expected values of the individual random loss components as in (20.a) – (20.c).   

∆SILµ = E { ILS∆}          (20.a) 

 
∆FILµ = E { ILF∆}                (20.b) 

         ∆∆ILµ  = E { ILD∆}                (20.c) 

∆TILµ =  E { ILT∆}         (20.d) 

The mean total channel loss given (21) follows from the linearity of the expectation operation 

and the additive relationship between the formerly deterministic quantities in (20.a-20.d). 
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TotalILµ =
∆SILµ +

∆FILµ +
∆∆ILµ +

∆TILµ .                                                       (21) 

 

The sensing uncertainty factors within EV


 and tV


 are assumed to be independent.  Given that the 

total loss function ILTotal can account for multiple independent sources of uncertainty within the 

parameter space of ( cv , EV


, tV


), the variance on ILTotal is the sum of the individual variances 

within the components of ILTotal.    

 

Corollary II: Assuming ne factors within EV


 and nt factors within tV


, the link loss 

variance can be decomposed as given in (22a), (22b), (22c) and (22d). 

2
S∆IL

σ = 2

)S E1(V∆IL
σ + 2

)enS (V∆IL
σ2 + 2

)S t1(V∆IL
σ +  2

)tnS (V∆IL
σ2       (22.a) 

2
F∆IL

σ = 2

)F E1(V∆IL
σ + 2

)enF (V∆IL
σ2 + 2

)F t1(V∆IL
σ + 2

)tnF (V∆IL
σ2         (22.b) 

2
DDIL

σ = 2

)D E1(VDIL
σ + 2

)enD (VDIL
σ2 + 2

)D t1(VDIL
σ + 2

)tnD (VDIL
σ2      (22.c) 

2
T∆IL

σ = 2

)T E1(V∆IL
σ + 2

)en
T (V∆IL

σ2 + 2

)T t1(V∆IL
σ + 2

)tnT (V∆IL
σ2      (22.d) 

 

Definition IV: The expected value of the cumulative link information loss can then be 

written as the expected values of the individual random cumulative loss components as in 

(23.a) – (23.c).   

 

    
XIL µ = E { IL X

 }                     (23.a) 
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YIL µ = E { IL Y

 }             (23.b) 

 QILµ = E { ILQ }      (23.c) 

'QILµ = E { IL 'Q }             (23.d) 

 

Corollary III: Assuming ne factors within EV


 and nt factors within tV


, the cumulative link 

loss variance can be decomposed as given in (24.a), (24.b), (24.c) and (24.d). 

 

2

XIL 
σ = 2

)E1(VXIL 
σ + 2

)en(VXIL 
2σ + 2

)t1(VXIL
σ + 2

)tn(VXIL 
2σ     (24.a) 

2

∆YIL 
σ = 2

)E1(VYIL 
σ + 2

)en(VYIL 
2σ + 2

)t1(VYIL 
σ + 2

)tn(VYIL 
2σ   (24.b) 

2
QIL

σ = 2

)E1(VQIL
σ + 2

)en(VQIL
σ2 + 2

)t1(VQIL
σ + 2

)tn(VQIL
σ2     (24.c) 

2
'QIL

σ = 2

)' E1(VQIL
σ + 2

)'
en(VQIL

σ2 + 2

)' t1(VQIL
σ + 2

)'
tn(VQIL

σ2    (24.d) 

 

3.7.2.2 Propagating Link Loss to Link Performance 

The variance and mean of the random cumulative loss components IL X
 , IL Y

 , ILQ  and IL 'Q  

are used directly to determine the variance on the performance at the random link performance 

components X
eP


,
Y
eP


,
Q
eP , and 'Q

eP .  The Maximum Likelihood Estimate (MLE) of Pe is inferred at 

each realization of the sufficient sample support about ( cv , EV


, tV


) providing the random mapping 

to performance Pe at each link. 
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Corollary IV:  Given sufficient sampling of the space of EV


and tV


within the finite alphabet 

χ  and Y , the environmental and position estimate uncertainty factors result in the 

respective random performance at X


and Y


given by functions Pe
X( cv , EV


, tV


) and Pe
Y( cv , EV


,

tV


) as in equations (25) and (26).  

 

X
eP


≡  Pe
X ( cv , EV


, tV

) ≈  F(ILX

)      (25)               

Y
eP


≡  Pe
Y ( cv , EV


, tV

) ≈  F(IL Y

 )     (26)               

 

If conditions of Corollary IV hold and perfect training conditions are assumed where cc vv  =' ,

EE VV


=' , 'tV


= tV


, then the mapping to the decision rule dopt will be optimal.   

 

Corollary V:  The output of the discrete random variable Q (from the finite alphabet Q ) is 

driven by the inferred decision out of the application of each realization of Y


 to dopt.  The 

random performance function Pe
Q( cv , EV


, tV


) can be expressed as random realization of the 

information loss in the channel, ILQ in (17c).  Using the approximation form of (13) 

(assume I(Q;V) ≈ 0), the random performance function Pe
Q is given by (27). 

 

Pe
Q ≡

 
Pe

Q( cv ,
EV
 ,

tV
) ≈F{ILQ }      (27)    

 

The approximation in (27) can be replaced by an equality using the full representation in 

(4). 

 

Pe
Q = F{ ILQ+ I(Q;V)}      (28)                            
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In (27) and (28), the relaxation of the constraint 'EV


= EV


 and 'tV

= tV


 expands the study of the 

effects of uncertainty to the loss due to the non-optimal training of d.  

 

Corollary VI:  The output of the discrete random variable Q’ (from the finite alphabet 'Q ) 

is driven by the inferred decision out of the application of each realization of Y


 to d.  The 

random performance function Pe
Q’( cv , EV


, tV


) can be expressed as random realization of 

the information loss in the channel, H(H) - I(H;Q’).  Fixing the suboptimal decision rule d(

'cv =
cβ , 'EV


=
Eβ , 'tV


=
tβ ) and using the form of (4)  and assuming I(Q;V’) ≈ 0, the random 

performance function Pe
Q’ is given by (29). 

   

Pe
Q’ ≡  Pe

Q’( cv , EV
 ,

tV
) ≈F{ILQ’}= F{H(H) – I(H;Q’)}      (29)    

 

The approximation in (29) is replaced by an equality using the full representation in (4). 

 

Pe
Q’ ≡  Pe

Q’( cv , EV
 ,

tV
 )= F{H(H) – I(H;Q’) + I(Q’;V’)}   (30)                            

                                                                   

Definition V: The expected link performance under control parameters cv   and in the 

presence of sensing uncertainty      ( EV

, tV

) is defined as the expectation of the random 

link performance components X
eP


, Y
eP


, Q
eP , and 'Q

eP .  

XeP 
µ = E { X

eP
 }         (31.a) 

 
YeP 

µ = E { Y
eP
 }           (31.b) 

QePµ  = E { Q
eP }         (31.c) 

'QePµ = E { 'Q
eP }     (31.d) 
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Given a sufficient number of Monte-Carlo samples over the random parameters in EV


and tV


, the 

standard deviation of the random link component performance function is used as a measure of 

reliability.  Reliability is interpreted as the confidence that a classification event would result in 

performance that would fall within the bounds of one standard deviation of the mean 

performance. 

 

Definition VI: Reliability in predicted link performance is defined as the standard 

deviation (
XP


e

σ , Y
eP
σ , Q

ePσ , and Q'
ePσ ) of the respective random cumulative link performance 

associated with X
eP


, Y
eP


, Q
eP , and 'Q

eP . The variability in link performance is defined as the 

square of the reliability; 2
XP


e

σ , 2
YeP
σ , 2

QeP
σ , and 2

Q'
ePσ . 

 

3.8 Uncertainty in Performance 

The independent sources of uncertainty contributing to 2

XIL 
σ in (24.a) are individually 

functionally mapped to the variance on the random performance function X
eP
  to determine the 

respective effects on the reliability of the predicted link performance estimate.  The uncertainty 

is passing through the transcendental relationship between ILX
  and X

eP


.  The nature of the 

nonlinear relationship makes it difficult to commute the independent loss variance sources 

analytically.  It is important to relate the independent sources of uncertainty underlying 2

XIL 
σ to 

the corresponding set of variances that combine to equal the variance on X
eP
 .   

 

While this relationship is transcendental and nonlinear, when the uncertainty is small and tight 

about the mean, it is possible to approximate the inverse entropy function (F) by a linear 

relationship [25] about the mean of ILX
  [4].  
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F(ILX
 ) = a + b∙(ILX

 ) 

The mean and variance of the of the approximation are then  

E[F(ILX
 )] = a + b ∙(

XIL µ ) 

Var[F(ILX
 )] = b2 ∙( 2

XIL 
σ ) 

Using established approximation techniques, the first order Taylor expansion of F around the 

mean
XIL µ of ILX


 is equal to  

F(ILX
 ) ≈  F(

XIL µ ) + F’(
XIL µ ) ⋅ (ILX


 - XIL µ ).      (32) 

 

Using the Taylor Series expansion in (32), the approximations for E[F(ILX
 )] and Var[F(ILX

 )] are 

[4] 

E[F(ILX
 )] = E[ XP



e ] ≈  F(
XIL µ ) = H-1(

XIL µ ).     (33) 

Var[F(ILX
 )] = 2

XP


e

σ ≈  {F’(
XIL µ )}2 ∙ ( 2

XIL 
σ )     (34) 

and F’(
XIL µ ) can be shown to equal 



































−

=

−

−

)(H1
)(H

1log)(F'

1

1

X

X

X

IL

IL
IL







µ

µ
µ

. 

Assuming ne factors within EV


 and nt factors within tV


, the cumulative link loss variance 

components given in (24.a) are applied to (34). 

2
XP


e

σ ≈{F’(
XIL µ )}2.


 2

)E1(VXIL 
σ + 2

)en(VXIL 
2σ + 2

)t1(VXIL
σ +



2

)tn(VXIL 
2σ     (35) 
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The variance on the performance estimate XP


e is then decomposed into the individual sources of 

sensing uncertainty being propagated through the decision space at X


.   

2
XP


e

σ ≈ 2
XP


Ee

σ  + 2
XP
2

ene

σ + 2
XP


te

σ  + 2
XP
2

tne

σ      (36)                   

Similar methods are applied to the independent contributions to the sensing uncertainty of EV


 

and tV


comprising the variances 2

∆YIL 
σ , 2

QIL
σ , and 2

'QIL
σ at Y


, Q, and Q’ respectively.    

 

3.8.1 Stability of the Linear Approximation 

The validity of the linear approximation in (34) requires 2

XIL 
σ be small.  Thus, the contributing 

sources of sensing uncertainty within 2

XIL 
σ must be individually small.  Given that the regime of 

interest is one where 
XIL µ and thus E[ XP



e ] are small, the derivative (slope) evaluated at 
XIL µ is 

relatively small.  The slope within this regime is illustrated in Fig. 6 for an arbitrary operating 

point.    

 

Fig. 6. The inverse Entropy Function;  f(z) = H-1(w) 

 

The slope  
dw

wd )(H 1−  is plotted in Fig. 7 for w ∈  [0, 1]. 
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Fig. 7. The Derivative,  
dw

wd )(H 1−
 , versus H(z)  

ATR design solutions of interest are typically in the range where Pe < .1 .  From Fig. 7 it is 

evident that the slope at an operating point within this regime will be in the range [0,.25] of 0.25 

affording reduced sensitivity to effects of the size of 2

XIL 
σ .   

 

3.9 Dimensionality and Computing  

The computation of the entropy of X


 involves the joint probability mass function (PMF) of the 

random multivariate X


and is complicated by the large dimensional nature of the observation 

mapping H→ X


.  It is desired to compute the discrete entropy for X


 absent any assumption 

regarding dependence between the respective dimensions of X


.  If the X


space consists of K 

random variables or indices (dependent or independent) and the random variable { }K,1; ∈kkX  has 

nb distinct bins (statistical divisions), then the size of the alphabet of X
 , χ , is given in (37) 

below.   

χ
 =∏ =

=

Kk

k 1 kn .       (37) 

 

For example, if K = 3 and nk = 2= nb for all k, χ  = 2 •2 •2 = 8.   
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The joint PMF of X
 , )( j

kN
xp ; { } { }bnK ,1,,1 ∈∈ jk is generated from a finite N sample ensemble and 

discretely binned with nb statistical divisions within each of the K elements of X


.  Stable entropic 

estimates require the statistics of the multivariate PMF be sampled sufficiently.  A reasonable 

example in the context of the HRR example with K=10 and nb =5 for all k would present a 

theoretical upper bound on the typical set of 510=9,765,625 [2].    The typical set represents the 

set of most probable events and contains almost all of the probability as the number of samples 

increases.  In the case of the radar example developed here, this would be the set of most 

probable signature amplitude combinations for all K dimensions of X


.  To generate a meaningful 

sample size for a PMF of this size, we would need to produce at least 10 times the actual typical 

set.  This means we need approximately 100 million samples.  Thus K and nb drive the 

dimensionality of X


and subsequently the sampling requirements for each ensemble within the 

Monte-Carlo simulation. 

 

A high dimensional problem is one where the alphabet of X


, χ , underlying the random 

process far exceeds the number of samples observed (N), i.e.; χ  >> N.  Sensing systems 

typically operate within this high dimensional signature data space of χ


.  The high dimension 

arises due to factors within the space X


( cv , EV


, tV


).  Hypothesis testing and inference within the 

high dimensional space of X


 in turn leads to large sampling requirements to adequately 

determine the underlying statistical nature of the phenomenon under study. Without accurate 

determination of the underlying system statistics, poorly performing hypothesis tests and/or 

parameter estimation occur (Bias/Variance tradeoff) [34].  

The number of statistical bins, nb, within the discrete sampling of the K element joint PMF of 

X


 also has a significant effect on χ


 and thus on the entropy computation of X


.  An increase in 

size of nb in X


will result in an increase in the entropy of X


.  However, in the limit, the value for 

I(H; X


) as a function of nb  asymptotes to a constant value - after one reaches the full intrinsic 

dimensionality of the subspace of I(H; X


) [35].  This will be true for (I(H; Y


), I(H;Q), and 

I(H;Q’) as well.  Choosing the most challenging link in the channel and without loss of 
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generality, a method for determining the intrinsic dimensionality of X


is then needed to guide the 

selection of N. 

 

3.9.1 Sample Size 

The subject of nonparametric estimation of discrete entropy and mutual information of random 

variables have been widely published [36].  The intent of this section is not to expand this body 

of knowledge but to record the approach employed to determine the minimum sampling 

requirements for the entropy estimation.  The variance parameters of these estimates is of 

particular interest.    

 

The link performance variability estimate at each of the respective links, 2
XP


e

σ , 2
YeP
σ , 2

QeP
σ , and 2

Q'
ePσ  

are generated through a sufficient number of draws from the respective random link performance 

functions X
eP


, Y
eP


, Q
eP , and 'Q

eP .   Each draw involves the estimation of an entropic quantity 

computed from PMF )( j
kN

xp  based on the N sample ensemble taken from X


.  The estimate of the 

link performance variability at X


, 2ˆ
XP


e

σ , is written more precisely as in (38) below.  

222

ˆ
ˆ

XPXPXP


Neee

σσσ +=        (38)  

 

2

ˆ XP


Ne

σ is defined as the N sample estimation variance or “sampling uncertainty” associated with the 

true variability 2
XP


e

σ .    Equation (38) can be written as  
















+= 2

2

22 ˆ

1ˆ
XP

XP

XPXP 





e

e

ee σ

σ
σσ N . 

For the high dimensional problem, N must be large enough for    
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12

2

ˆ

<<
XP

XP





e

e

σ

σ
N .           39) 

The objective then is to produce link reliability estimates that are within this regime.   The choice 

of N must be selected to ensure the uncertainty of the entropic estimate is much less than the 

reliability limits realized due to various factors within ( cv , EV


, tV


) under study.  That is, the 

ensemble size N of X


, Y


, Q, and Q’ should be sufficiently large to ensure that the variance of 

the estimate falls within three significant digits of the variability levels  ( 2
XP


e

σ , 2

∆YIL 
σ , 2

QIL
σ , and

2
'QIL

σ ).   Thus for the case of variability at X


 we desire 001.2

2

ˆ

<
XP

XP





e

e

σ

σ
N . 

As stated above, χ


 in particular, can grow to large levels and as such the number of samples 

required will grow as well.   Given that the sampling ensemble size N of X


is the defining case, 

the following analysis is focused on the process at X


 and this minimum N determination will be 

imposed also on Y


, and Q, 

 

3.9.2 Phase Transitions and the Typical Set 

The entropy computation [36] requires the development of the joint mass function associated 

with the multi-variate X


, )( j
kxp ; j∈{1:nb}, k∈{1:K}.  The development of this mass function 

assumes no independence between the K indices of X


 and is performed using a “linked list” 

approach to limit the memory requirements during computation.  A doubly linked list 

implementation with a hash table search approach yields a computational complexity of O(N) [4].    

The Miller Madow estimate [37] provides a faster convergence over the MLE method [2] for 

finite sample estimates.  

 

Maximum Likelihood Estimate of H( kX


)  ;  
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)(Ĥ kX
NMLE = )}({log)( 2

1

j
k

j
k NN

xpxp-
bn

j
∑
=

 .      (40)                                                                                            

Miller-Madow Estimate of H( kX


) ;  (note: M+= number of statistical bins for which 0)( ≠j
kN

xp )        

 

 )(Ĥ kX
NMM =  )(Ĥ kX

NMLE  + {1/(2N)}{M+-1}           (41) 

The N sample estimates for )(Ĥ kX
NMLE  and )(Ĥ kX

NMM  are generated from the joint mass function, 

)( j
kxp ; j∈{1:nb}, k∈{1:K}.   

 

Phase transitions [38]-[42] within the growth trajectory of the estimated entropy with 

increasing N are useful in defining the alphabet size χ


.  The following illustration demonstrates 

the usefulness of this approach.  The signature process under evaluation is constructed by design 

such that the actual entropy value is known.  We model the multivariate random signature vector 

X


 to be uniformly distributed (standard uniform {0,1}) with nb=6 (all indices of X


) and K=3.   

The theoretical maximum value of the entropy of X


is then log2(nb
K) or log2(63)=7.7549 Bits.  In 

Fig. 8 we incrementally generate the estimate of the discrete entropy of X


for an increasing 

number of samples.  We plot the typical set of X


 for each increment. The typical set εA = 2H( X


)
 

is computed from the discrete entropy H( X


).  Each of the estimated values for the typical set of 

X


asymptote at the maximum dimensionality of X


 where the theoretical values of H( X


) = 

7.7549 Bits and εA = 216. 
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Fig. 8. Phase Transitions in X


 and Computing the Minimum Sampling NM, MLE Method 

 

Initially the samples are filling the open high dimensional space of X


in a uniform fashion.  

The linear dashed line represents the log2(N) growth of the entropy associated with this uniform 

distribution.  Note that the actual achieved entropy computation begins to diverge from a 

uniform distribution.  Only after the samples of X


 begin to accumulate in the bin space of the 

joint mass function of X


 does this transition occur.   This phase transition point represents the 

point at which “collisions” occur and the fundamental statistics of X


 change.  

 

The phase transition point is determined from intersection of the line tangent to the linear 

portion of the typical set profile and the line tangent to the asymptotic portion of the profile.  The 

number of samples coinciding with this phase transition point is NT.  For the example here, NT is 

found to be approximately 250 as illustrated in Fig. 8.  The minimum number of samples, NM, is 

taken to be 100 times the value of NT.   In this example NM is found to be 25,000.  The Miller-

Madow estimate for entropy )(Ĥ kX
NMM  is used for all entropic computation within the remaining 

body of this analysis.   
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3.10 Sampling Uncertainty for Probability of Error Estimate                                                         

Since the random estimation error variable is essentially the sum of many independently 

distributed random variables, the estimation error is Gaussian.   The standard deviation of the 

Gaussian distribution of )(Î XH;


, will then scale as a function of
N

1 .  Thus the variance on the 

estimate )(Î XH;


,  2
2);(ˆ

TNxHI
σ , can be scaled to large sample size ( 2

);(ˆ NxHI
σ ).  The standard deviation of 

the estimate X
eP̂  can be determined from the independent contributions of H(H) and )(Î XH;



shown in (42). 

   

X
eP̂  ≈  H-1(H(H) – )(Î XH;


)       (42)  

 

For the equal probable binary hypothesis case, H(H) is equal to 1 Bit.  Therefore the sampling 

uncertainty 2

ˆ XP


Ne

σ  is a function only of 2
);(ˆ NxHI

σ .   

As in section III.H, the inverse entropy function in (42) is a transcendental function and as such 

the variance on the estimate X
eP̂ , 2

ˆ XP


Ne

σ , can be very difficult to determine analytically.  Following 

a similar line of analysis as in section III.H using (33) and (34), the mean and variance of X
eP̂ can 

be calculated as   

E[ X
eP̂ ] ≈  H -1(1-

TNxHI 2);(ˆ
µ )      (43)                                                    

2
ˆ

NexP
σ ≈  { f

'
 (

TNxHI 2);(ˆ
µ )}2 ⋅ 2

);(ˆ NxHI
σ .     (44)                                              

The use of (44) requires an estimate of the mean of )(Î XH;


which is taken to be the sample mean 

NxHI );(ˆ
µ .   The ultimate goal is to learn the sampling uncertainty for X

eP̂ , 
XP


Ne
ˆ

σ , from a low sample 
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estimate of the mean of )(Î XH;


, 
TNxHI 2);(ˆ

µ .  Manipulating (44) above, 2
);(ˆ NxHI

σ can be written in terms 

of the required variance on the estimate of error, 2
ˆ

Req
x
eP

σ ; 

2
);(ˆ NxHI

σ
2

);(ˆ

);(ˆ2

)1(1

)1(
log

2

2

ˆ 















−−

−
⋅≤

TN

TN

x
eP

xHI

xHI

µ

µ
σ 1−

1−

H

H

Req

  .       (45) 

To ensure
NeP̂

σ ≤
ReqeP̂

σ , the relationship in (45) is essential. 

 

The regime of interest is where )(Î XH;


is close to 1 and H-1(1-
TNxHI 2);(ˆ

µ ) and thus X
eP̂  is small.  

The derivative of the estimate in this regime is in the range of [0, .25] as illustrated in Fig. 7.  A 

slope of less than .25 is small relative to the range of values given in Fig. 7 yet large with respect 

to 
TNxHI 2);(ˆ

µ .  Therefore, errors in the estimate of 
);(ˆ xHI

µ can have a significant impact on the 

estimate of the number of samples required to reach a target sampling uncertainty of 2
ˆ

Req
x
eP

σ .  This 

means that a conservative approach is needed to estimate E[ )(Î XH;


] based on a small number of 

samples.  Instead of using the sample mean 
TNxHI 2);(ˆ

µ as an estimate of the expectation E{ )(Î XH;


}, a value somewhat less than the sample mean should be chosen.   Depending on the level of 

confidence required in the estimate of the number of samples N, a higher confidence estimate 

can be achieved by replacing 
TNxHI 2);(ˆ

µ with 
TNxHI 2);(ˆ

µ -
TNxHI 2);(ˆ

σ  in (45). 

 

As discussed above, the variance on the estimate )(Î XH;
 ,  2

2);(ˆ
TNxHI

σ , can be scaled to large 

sample size ( 2
);(ˆ NxHI

σ ).  The mean of the estimate of )(Î XH;
 , 

TNxHI 2);(ˆ
µ , and the standard deviation 

, 
TNxHI 2);(ˆ

σ , can be estimated using the low number of samples (N=2NT).   
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3.11 Sampling Uncertainty versus Variability in Performance  

The expression in (45) provides guidance on the level of sampling uncertainty associated with 

)(Î XH;


required to achieve the corresponding sampling uncertainty in X
eP̂ . A more important 

question relevant to the study of uncertainty and performance estimation is the relationship 

introduced in (44) and written in general form below.   

α
σ

σ
<2

2

ˆ

XP

XP





e

eN        (46) 

The variable α  can be set to limit the degree of sampling uncertainty to be realized in the 

performance confidence analysis.  Using (44), previous development, and the fact that 2
X
ILσ =

2
)I( XH;

σ ; (46) can be written as in (47). 

)(2
(

2
ˆ

2

2

ˆ

T
)I

I NN,TN2N β
σ

σ

σ

σ
⋅











≈ ⋅

XH;

X)(H;

XP

XP






e

e      (47)     

The factor )( TNN,β  in (47) is given as 

( )
( )


















































 −






 −













−

−

⋅










 ⋅
=

⋅

⋅

TN2

TN2

I

I

)I

)I

2

2
T

T N
NNN,

X)(H;

X)(H;

XH;

XH;

ˆ
1−

ˆ
1−

(
1−

(
1−

1H −1

1H
log

1H−1
1H

log
4)(

µ

µ

µ

µ

β


 . 

Thus the expression in (48) can be used to test for conditions specified in (46). 

 

αβ
σ

σ
<⋅














⋅ )(2

(

2
ˆ

T
)I

I
NN,TN2

XH;

X)(H;



       (48) 
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The FBIT model provides a platform for the study and analysis of the relationship of the level 

of sampling uncertainty to the level of performance uncertainty.  Incremental values for the ratio 

on the left side of (48) can be computed for increasing N.  In section IV, the point at which the 

inequality is obeyed is related to the phase transition minimum sample methods generated in 

section III.I.   
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4 AN INFORMATION FLOW NUMERICAL EXAMPLE 

The application of the FBIT method to the study of uncertainty propagation is now illustrated 

within a simple radar sensor example.  An information loss budget is constructed for a baseline 

design.  Selected forms of uncertainty in Table I are introduced into the system to demonstrate 

the analysis of the effects of propagating uncertainty through the information sensing channel.   

 
 

4.2 Observed Target Scattering Model  

 

In the high frequency regime used to obtain HRR signatures, the target may be approximated 

as a collection of scattering centers valid over a limited aspect window and frequency band.  

These scattering centers may be considered to be localized to a point and may represent a variety 

of scattering phenomena ranging from specular reflection to diffraction phenomena such as edge 

and tip diffraction.  The fields radiated by these point scatterers depend upon both temporal and 

spatial frequencies (angular dependence).  Since the radar illuminating the target has finite 

bandwidth and is a one dimensional imaging system, the target is seen as a collection of 

contiguous swaths of range, with each range swath corresponding to a particular range.  The 

extent of each range swath (range resolution) depends upon the signal bandwidth.  For a typical 

extended target of interest, each range swath contains a number of scattering centers which can 

be widely spaced in cross-range [17].   

 

The electromagnetic field obtained as a result of the interference of the scattered fields from 

the scattering centers appears as the signal corresponding to a particular range bin of the target 

signature.  The target signature may be considered to be a one dimensional image of the 

reflectivity (or scattering) profile of the target for a given azimuth/elevation aspect angle ( φθ , ) 

and bandwidth.  The mathematical definition of the radar signature is developed from the 

normalized scattered field in (49).  sE
 and iE

 are the scattered field and the incident field 

respectively. 
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i

s

R E
ERS 


24lim),( πφθ

∞→
=        (49) 

Using scattering center modeling and the far field approximation, (49) can be written in terms of 

the target aspect angle and the transmitted wavelength as shown in (50) [43]. 

∑
=

=
M

m

Rj

m
me

1

),(4

),,(
φθ

λ
π

σλφθES       (50) 

 

In equation (50) ES  is the band-limited frequency response of the target comprised of M 

scattering centers at the respective range Rm.  Conditioned on the target hypothesis H at a fixed 

aspect angle ( ii φθ , ), ),( ii φθES


 = ),,( λii φθES ; { }fll llll ,, 1+∈  defines the band-limited frequency 

response of the normalized scattered field measurements given in (50).  Clusters of simple 

scattering centers are chosen for targets of interest at X-band frequencies (8-12 GHz) in the 

following development.  The targets are electrically large with dimensions in range and cross-

range of many wavelengths.   

 

The target cluster of M isotropic scatters occupies the target volume within the coordinate 

system illustrated in Fig. 9.   
 

 

Fig. 9. Radar Sensor Coordinate System 

 
Φ
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The 3 dimensional target scattering center configuration for the two targets examined in the 

following example occupy an approximate cubic volume of {x=2, y=3, z=2.5} meters and are 

positioned at a line-of-site, osl


,of for  5.7,10),( =tt φθ .  Both targets are comprised of 100 

scattering centers of unity amplitude and three strong localized scattering clusters of amplitude 5.  

Target 1 differs from target 2 in that the length of the target 1 is shorter than target 2 in the Y 

dimension by .5 meters.  One of the localized scattering clusters is also displaced by (.2, .2, 0) 

meters. 

 

4.3 Radar Sensor Model 

Applying matched filter processing and the discrete Fourier transform to the observed 

signature ),( ii φθES


 in additive noise, the measured HRR signature can be modeled for a range of 

frequencies present in the transmitted waveform.  The multidimensional encoded source i
EX


is 

defined here as the vector form of the time delay transformation of the band-limited frequency 

response ),( ii φθES


.  The measured random signature process i
nX


 is then defined as in equation 

(51) weren
 is additive white noise [17]. 

i
nX


= i
EX


+n
        (51) 

The process i
nX


 is modeled at the output of a radar step frequency measurement sensor system 

for the specified target aspect angle ( ii φθ , ).  The additive noise process n  is modeled as the sum 

of thermal white noise and quantization noise components.  The quantization error component is 

thought of as a random process uncorrelated with both the signal and the thermal noise. The 

complete radar step frequency measurement model system parameters are summarized below in 

Table III.   

TABLE III. SENSOR SUMMARY 
Center frequency 9.6 GHz 

Transmit Bandwidth 800 MHz 
Number Bits in A/D 

Conversion 8 Bits 

Number of Pulses Integrated 1024 
Signal-to-Noise Ratio  
(time delay domain) 

20dB 
(variable) 
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The sensing of i
nX


 in a dynamic real world environment is subject to the uncertainties listed in 

area 1 of Table I leading to the random signature process X


as outlined in section III.E and 

summarized in Table II.  Given the dynamic nature of the phenomenon underlying these 

uncertainties, the statistics associated with the dimensions of X


are often time varying.    The 

target statistics are assumed to be stationary (constant with time), thus the sample signatures 

associated with this random vector correspond to a stationary random process.  Given the short 

measurement times associated with radar measurements of the nature under study, this 

assumption is judged as appropriate.   
 

4.3.1 Modeling Pose Angle Estimation Uncertainty  

The observed object aspect angle estimate can be viewed as lying within a solid cone angle 

centered on the observed object aspect angle ( tt φθ , ). The parameter tσ  is defined as the 

uncertainty associated with the sensor estimate of ( tt φθ , ).  The parameter tσ  and tµ  are elements 

of tV


 and are the standard deviation and bias of the object aspect angle estimate respectively.   

 

The variation in measured signature phenomenology due to the uncertainties in target aspect 

angle are generated in the signal model in (50) through the introduction of distributions on θ  and 

φ .  The parameters θ  and φ  are both modeled as Gaussian random variables each with variance 
2
tσ  and mean tµ + tθ  , tµ + tφ .  The bias parameter tµ is assumed to be unknown and is modeled 

uniformly distributed between the interval [-1, 1] degrees.   
 

 

4.3.2 Modeling Leading Edge Position Estimation Uncertainty 

The target leading edge location estimation will vary under real world sensing conditions.  

Thus the range alignment (along the osl


) of the measured signature process X


to the decision rule 

training process 'X


 is imperfect and can be modeled as an uncertainty source.   The process X


 

alignment to 'X


 is modeled through a positive bias applied to the phase center of the scattering 

45 

Approved for public release; distribution unlimited. 



 

cluster underlying X


. The bias parameter rµ is assumed to be unknown and is modeled uniformly 

distributed between [0, .2] meters.  Note that rµ is another element of tV


. 

 

4.3.3 Modeling Imperfect Training  

The training process component 'X


 in Fig. 2 represents the best achievable statistical 

characterization of the observed signature process X


.  Signature training processes must 

represent the radar measured signature process across a wide range of measurement uncertainties 

and target configurations as well as under many uncertain operating conditions including clutter, 

obscuration, and other sources of RF interference.  Construction of a signature training database 

derived entirely from measurements is expensive and can be an impractical proposition.  It is 

possible to construct a signature database using electromagnetic scattering codes.  However, 

given the complexity of typical targets and the challenge of modeling a variety of 

electromagnetic scattering phenomena ranging from specular reflection to edge diffraction, 

smooth surface diffraction etc., computation of signatures with sufficient accuracy is also a 

challenging task [17].  Within this analysis the dissimilarity between X


 with 'X


 will be generated 

using a matched scattering center model configuration with X


.  The uncertain parameters of tV


and EV


 modeled within X


 are not modeled in 'X


.  'X


= X


 only when X


is used directly for the 

training of the decision rule d.    

 

4.4 Feature Discrimant and Decision Rule Design 

The function f used to compute the feature discriminate Y


 from X


in Fig. 2 is developed from 

the squared error of the distance from the mean templates 
1X

µ and

2X

µ derived from the marginal 

training processes 1'X
  and 2'X

 as defined below [33]. The operator τ is defined as the element-

wise magnitude of each complex element of the random vectorτ . 

1'X

µ = E {

1'X
 }, 

2'X

µ = E {

2'X
 }, 

12'X

µ =

1'X

µ -

2'X

µ  
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[ ] [ ]T'X'X 1212


µµ −⋅−= 111 XXY  

[ ] [ ]T'X'X 1212


µµ −⋅−= 222 XXY  

 

Y


=[ 1Y


, 2Y


] 

The Maximum Likelihood estimator is used to determine the optimal decision rule d. 

 

d = E { } { }






 −

2
EE 2YY1



 
 

Assuming equally likely priors on each of the binary hypotheses H1 and H2 in X


and Y


, the 

samples ( Y


) from Y


 are applied to the decision rule d .  Y


< d are declared from H1 (denoted 

Q1) and Y


> d are declared from H2 (denoted Q2).  The in-class and out-of-class scoring system 

is given by the conditional probabilities within κγβα αnd,,, as provided below. 









⋅=

1

1
1 X

QX 


pp )(α
, 









⋅=

1

2
1 X

QX 


pp )(β  









⋅=

2

1
2 X

QX 


pp )(γ
, 









⋅=

2

2
2 X

QX 


pp )(κ  

The output of the decision algorithm Q as formed from the scoring system above can be 

summarized by the confusion matrix for the binary classifier given in Fig. 10 below. 

Test Class/ 

Train Class 
1'X

  2'X
  

1X
  α  β  

2X
  γ  κ  

Fig. 10. Confusion Matrix for Q 
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4.5 Certainty States 

The “most certain” state achievable for the example HRR radar example presented here is the 

case of the observed deterministic multivariate signal in noise ( i
nX


) when accompanied by perfect 

training ( 'X


 = i
nX


).  Assuming sufficient sampling to completely determine the pdf associated 

with the additive noise, the resulting statistical characteristics of the random performance 

functions will resemble the delta function [44], and thus the reliability in predicted link 

performance (such as
eP

σ ) will be very high as shown in case 1 of Fig. 10.  In a less certain case, 

the signal under measurement is random in nature ( X


).  The expected performance of the 

random performance functions will reflect the loss in information due to the degree of 

uncertainty present in X


 as well as a decrease in reliability.  Given the progressively large 

number of degrees of freedom associated with the uncertainty parameters associated with EV


 and

tV


in X


, the statistical support underlying the statistics of the random link performance functions 

X
eP


, Y
eP


, Q
eP , and 'Q

eP  can quickly increase as is shown in case 3-5 below in Fig. 11.  

 

 

Fig. 11. Propagation of Uncertainty Illustration 

 

Table IV below relates selected combinations of measurement and training uncertainty sources 

from Table 1.  The cases 1-6 identified in Table IV represent the certainty states of interest 

within the system.  Case 1 of Table IV represents an observed process nX


of a stationary object of 

known aspect angle with perfect training.  Case 1 conditions correspond to the highest certainty 

state possible.  Case 2 corresponds to the observed process X


 of an object that is moving slow 

enough as to appear stationary during the measurement interval.  The aspect estimation is tσ =.75 

H X Y Q

fPe/Q, losσ
fPe/Y, losσfPe/X, losσ

fPe/X fPe/Y fPe/Q

Case 1: Signal in Noise

Case 3-5: Random 
Signal in Noise

Noise

Noise + 
Random Pose
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degrees with an unknown bias ( tµ ) and again the training is perfect.  Case 3 conditions are 

similar with an unknown leading edge position bias rµ .   

 

The parameter SNR is treated as an unknown parameter in Case 4.  Case 5 is a combined 

condition of the unknown parameters in Case 2, 3, and 4.  In case 6, a form of imperfect training 

is presented where the measurement parameter uncertainty provided in Case 5 is combined with 

training level B ( rµ = 0 and tµ = 0). 

 

4.6 Sampling and FBIT Analysis 

 

4.6.1 Signature Ensembles 

The amplitude response for the N sample ensemble of HRR signatures for a “baseline” set of 

conditions defined as Case 2    ( rµ = 0 and tµ = 0) are provided in Fig. 12.a and Fig. 12.b.   

 

 

a. Magnitude of 1X


               b. Magnitude of 2X


 
Fig. 12. HRR Signature Amplitude Ensemble (No Noise); N=103 
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TABLE IV  

MEASUREMENT AND TRAINING CERTAINTY CASES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*note: Parameter tμ modeled uniform [  1,1− ],  Parameter rμ modeled uniform    [  2,.0 ], Parameter SNR modeled Gaussian ( =µ 20 dB, =2σ 4 dB) 

Case Number 

 
Training Level Measurement 

Level 

Case 1 

'X


= 
nX


 







5.7,10),(

0,0

0,0

=

==

==

tt

rr

tt

m
φθ

mσ

mσ

SNR=20dB 

nX


 







5.7,10),(

0,0

0,0

=

==

==

tt

rr

tt

m
φθ

mσ

mσ

SNR=20dB 

Case 2 

'X


= X


 







5.7,10),(

0,0

,75.

=

==

=

tt

rr

t

m
φθ

mσ

σ tμ  

SNR=20dB 

X


 

 







5.7,10),(

0,0

,75.

=

==

=

tt

rr

t

m
φθ

mσ

σ tμ  

SNR=20dB 

Case 3 

'X


= X


 





5.7,10),(

,0
0,75.

=

=
==

tt

r

tt

m
φθ

σ
mσ

rμ
 

SNR=20dB 

X


  





5.7,10),(

,0
0,75.

=

=
==

tt

r

tt

m
φθ

σ
mσ

rμ
 

SNR=20dB 

Case 4 

'X


= X


 







5.7,10),(

0,0

0,75.

=

==

==

tt

rr

tt

m
φθ

mσ

mσ  

SNR 

X


  







5.7,10),(

0,0

0,75.

=

==

==

tt

rr

tt

m
φθ

mσ

mσ  

SNR 

Case 5 

'X


= X


 





5.7,10),(

,0
,75.

=

=
=

tt

r

t

m
φθ

σ
σ

r

t

μ
μ  

SNR 

X


  





5.7,10),(

,0
,75.

=

=
=

tt

r

t

m
φθ

σ
σ

r

t

μ
μ  

SNR 

 

 

Case 6 

'X

≠  X


 







5.7,10),(

0,0

,75.

=

==

=

tt

rr

t

m
φθ

mσ

σ tμ  

SNR=20dB 

X


 





5.7,10),(

,0
,75.

=

=
=

tt

r

t

m
φθ

σ
σ

r

t

μ
μ  

SNR 
 

50 

Approved for public release; distribution unlimited. 



 

 

The five target features (K=5) at range bins 17-21 are selected for discriminate processing in X


Y


→ .  

 

4.6.2 Sampling Uncertainty Example 

The sampling uncertainty defined in Section II.J is illustrated using the baseline uncertainty 

conditions and multiple target ensembles similar to those given above in Section III.I.2.  Using 

the Monte-Carlo simulation, the typical sets for 1X


, 2X


, and X


, are computed for an increasing 

value for N. Multiple ensembles of each are simulated at each value of N to generate both the 

mean and variance of the entropy estimate within the typical set.   

 

The typical set plot in Fig. 13 provides the value for NM for the entropy estimates for X


as 

defined in Section III.I.2.  The number of samples required for each ensemble based on the phase 

transition at NT=2x103 within the typical set profile is determined to be NM=2x105.   

 

Fig. 13. Phase Transition Within Typical Set of X


Versus N; nb=6 

 

NT=2x103 
NM=100xNT=2x103x100=2x105 
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Figure 14 demonstrates the entropy scaling property discussed in section III.J.  In the following 

example, Monte-Carlo simulation is used to compute the actual estimation variance (L 

draws=1000) at each incremental setting of NM.  The estimation variance at NT=3x103 is scaled 

to each setting of NM to a maximum value of NM=2x105 validating the use of the 1/N scaling 

factor in (47).   

 

Fig. 14. Scaled Standard Deviation of Estimator of Entropy of X


Versus N; nb=6, L=1000 

 

The sampling uncertainty associated with entropic estimation at X


 is realized within the 

estimate )(Î XH;
 .  Figure 15 applies the 1/N scaling directly to the MLE estimate of )(Î XH;


, )(Î YH;



, and )(Î QH; beginning at 2xNT = 6x103.   
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Fig. 15. Scaling Properties of )(Î XH;
 , )(Î YH;

 , )(Î QH; Versus Ensemble Size N, NT=3x103, nb=6, L=1000 

 

In Equation (47), Corollary IV and V are used to compute the sampling uncertainty associated 

with the estimate of the probability of error.  The following figures demonstrate the accuracy of 

using (44).  Equation (44) is applied at each link in the radar channel.  Note that each application 

of (44) is conducted with the 2xNT=6x103 as the basis for the scaling. The approximation for the 

standard deviation of the probability of error is computed for the complete range of ensemble 

size out to N=3x104.  Figure 16 provides a comparison of the probability of error estimate using 

(44) to the error computed using simulation.  These results show that the estimates compare very 

nicely to the “actual” results. This agreement indicates that the dispersion of the mean mutual 

information of the estimate is low enough to support the use of the linear approximation.  
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Fig. 16.  

XP


Ne
ˆ

σ ,
YP


Ne
ˆ

σ , and
QP
Ne

ˆ
σ  Versus the Linear Approximation,  NT=3x103 , nb=6, L=1000 

 

The application of (44) at each draw of the Monte-Carlo simulation will generate an estimate of 

the sampling uncertainty associated with the probability of error estimate.  Figure 17 illustrates 

the application of (44) to the results in Fig. 15.   

 

 

Fig. 17. Scaling Properties of X
eP̂ , Y

eP̂ , Q
eP̂ Versus N , NT=3x103, L=1000 
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Sigma Pe X Actual
Sigma Pe X Linear Estimate
Sigma Pe Y Actual
Sigma Pe Y Linear Estimate
Sigma Pe Q Actual
Sigma Pe Q Linear Estimate
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Equation (48) provides the test for minimum sampling based on low sample ensemble sizes.   

In Fig. 18, (48) is applied to the radar example at the three link positions X

, Y
  and Q.  The test 

results in Fig. 18 show that the true ratio of sampling variance to the variability in predicted link 

performance is given as a function of ensemble size N.  This is indicated by the solid lines.  The 

dashed lines represent the ratio as given by the 1/N scaling as discussed above.  The required 

ratio α is given by the dashed black line at two different levels.  The results of the test given in 

(48) are given at each increment for NT =3x103.    The interesting observation in Fig. 18 is that 

the point at which the test falls below the threshold α  is consistent with the ensemble size NM as 

derived from the phase transition point NT as outlined in section III.K.  This is a significant 

validation of the use of the phase transition method for estimating minimum ensemble size 

within Monte-Carlo simulation.  The results of the three tests above provide insight into the 

relationship of the required ensemble size N to the reliability in link performance estimates 

within sensitivity analysis simulations.  

 

Fig. 18. Sampling Uncertainty and Testing NM at X


, Y


, Q 
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MM Scaled Ratio X
Actual Ratio X
MM Scaled Ratio Y
Actual Ratio Y
MM Scaled Ratio Q
Actual Ratio Q
Alpha=.01
Alpha=.001
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4.6.3 The Fano Equality 

It is important to demonstrate the validity of Theorem I as written in (2).  Using the radar 

example, Fig. 19 illustrates that the addition of I(Q;V) brings the approximation form of Fano 

into agreement with the “true” probability of error as simulated using Monte-Carlo within the 

radar example outlined above.  Again using Case 2 ( rµ = 0 and tµ = 0) conditions for the binary 

classification, the performance given by the Fano approximation is given by the red line.  The 

Simulated “true” (actual) performance is given by the black line.  The green line represents the 

performance using the equality (exact) form of Fano in Theorem I.   The equality form of Fano 

agrees with the “true” performance which validates Theorem I.   

 

 

Fig.19. Actual Mean Probability of Error at Q Versus Mean Fano Estimated Performance at Q, 

nb=6, L=1000 
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5 EXPERIMENTS 

Several hypotheses directly highlight the potential advantages of the FBIT method in the 

performance characterization of an information sensing system in the presence of various 

uncertainties.   

 

5.2 Research Hypotheses  

Hypothesis 1: Information flow through the components of a sensing system can be studied and 

information bottlenecks can be identified.  System performance upper bounds can be characterized 

based on the loss in information attributed to each component.  

Hypothesis 2: For a fixed H(H), maximizing I(H,Q) will minimize the equivocation H(H/Q) and 

thus minimize the probability of error Pe.  Thus; system component design parameters ( cν ) can be 

traded directly with loss in the channel to minimize Pe . 

Hypothesis 3: Sources of uncertainty can be characterized in terms of their effects within the 

decision rule subspaces and their relative impact to losses within several subsystem components of 

the radar system.   

Hypothesis 4:  The increasing dimensionality of X


 will eventually lead to an unacceptable 

degradation to the reliability in predicted link performance. 

Hypothesis 5: Selected sources of uncertainty within the radar information channel can be ranked 

as to their relative impact to the performance of the information exploitation system.  

 

5.3 Experiments 

The experiments conducted to address the hypotheses above are given in Table V. 
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TABLE V.   

LIST OF EXPERIMENTS AND APPLICABLE CASES 

Experiment Case Hypothesis 

1. Information Flow 2 1 

2. System Trades  2 2 

3 System 
Uncertainty and 
Information Flow  

1,2,3,4,5,6 3,4,5 

 

 

5.3.1 Information Flow and Design Trades within the Radar Channel  

The value of the Data Processing Inequality is readily seen from Fig. 20-22 below where the 

individual loss at each link in the channel can be quantified.  In each of the figures, the MI and 

probability of error is computed for a changing design parameter within cν .   Three design 

parameters are traded; system thermal noise, system dynamic range, and system bandwidth. 

 

The signal-to-noise ratio of the signatures resulting from sensor measurements depend in part 

on the noise figure of the system.  In Fig. 20 thermal noise is scaled by varying the noise figure 

across a range that affects a SNR range of 1 dB to 10 dB (SNR is given in frequency domain 

prior to inverse Fourier Transform gain).  The results of the SNR trade indicate that an SNR of 8 

dB in the frequency domain (19 dB in the time-delay domain after transform gain) will generate 

maximum information flow. 
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Fig.20. System Thermal Noise Trade, SNR in Frequency Domain 

 

It is also of interest how the dynamic range of the sensor affects the information flow through 

the channel.  Specifically,  the sensitivity of I(H;Q) and ultimately Pe to the dynamic range in the 

sensor is of interest.  The A/D conversion of the radar intermediate frequency (IF) signal to a 

digital representation must preserve the amplitude and phase information contained in the radar 

return with minimum error.  The effects of quantization at each measurement point (quantization 

event) due to the twos-complement rounding error are assumed to be zero mean white noise 

processes [45].  The A/D conversion and associated quantization noise are modeled as an 

additive noise component e


 and added to the measured signature process [46]. 

 
i
nX


= i
EX


+n


+ e
       (52) 

The maximum dynamic range supportable by a “B-bit” quantizer is the ratio of the largest 

representable magnitude to the smallest nonzero representable magnitude [47].  The dynamic 

range for twos compliment and magnitude encoding for a “B-bit” quantizer is [48]  
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Dynamic Range (dB) = 









 −
⋅

−

1
12log20

)1(

10

B

.
 

The trade in Fig. 21 indicates that a 3 or 4 Bit A/D converter is needed to maximize information 

flow in the channel given the binary target set under evaluation.         

 

Fig. 21. System Dynamic Range Trade 

 

The analysis of the bandwidth trade in Fig. 22 can be nicely linked to the physical scattering 

configurations of target 1 and target 2.  As was mentioned earlier in the report, the locations for 

the non-collocated dominant scatterer differ by .2 meters or .65 feet.   

One would then expect that there should be a ‘bump’ in information flow when the bandwidth 

reaches levels that support the resolution necessary to resolve the peaks associated with these 

two scatterers.  The theoretical resolution to achieve this feature separation would be 

approximately 800 MHz using the fundamental bandwidth relationship; 

2           3              4         5              6                     7           8 
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In Fig. 22 the bump in performance is centered at 800 MHz where the mutual information atY
  

and Q is rapidly increasing and where the probability of error is greatly reduced.   

  

Fig. 22. System Bandwidth Trade 

In each figure it can be seen that the MI decreases as links move further down the channel.   

With one Bit going into the channel (binary classification problem), Table VI below tabulates the 

information loss budget for each trade study at the selected baseline operating point.  

 

The study of Table VI reveals several key points.  First, In this particular example problem, the 

targets appear to be separating very well at X


, and much of the loss occurs within the feature 

extraction and at the application of the decision rule.  The loss at link Y
  appears to be the 

dominant information limiting component in the system.  There is a loss of .3-.4 Bits at the 

feature extraction function at Y
 .  The information loss associated with signature measurement 

and signature processing results in only .1 Bits of loss. This is very important information in 

achieving optimization of the system design for information sensing.  Little gain can be expected 

through the expansion of sensing degrees of freedom (DOF) in improving the overall 

performance of the system.   
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TABLE VI                                                                                                                                                                                                                          
INFORMATION LOSS BUDGET FOR VARIOUS TRADES 

System 
Component 

Information Loss, Bits 
Trade  1 

SNR 
Trade 2 

DR 
Trade 3  

BW 
Source-to-
Measurement ( X


) 

0.1 0.1 
 

0.05 
 

Measurement –to-
Feature ( Y


) 

0.4 
 

0.3 
 

0.4 
 

Decision Rule 
Application (Q) 

0.1 
 

0.2 
 

0.1 
 

Total Channel 
Loss* 

0.6 0.6 0.55 

*Baseline Conditions; SNR=20 dB, BW=800 MHz, DR=20 dB 

 

Also, the loss due to the decision component of the system is in the range of .1 - .2 Bits.  

Depending on the performance requirements of the system, improvements to the decision stage 

of the system may or may not be warranted.  Prior to the decision stage of the system, .4 - .5 bits 

of cumulative loss have been sustained resulting in an “upper bound” in performance of 

something in the area of Pe =.1.  No improvements to the classifier design within the decision 

component of the system can improve upon this performance level.  Improvements appear to be 

best directed toward the feature extraction stage.   

 

An optimal design operating point may for example include the following component 

selections; (i) A/D converter with B=4 Bits, (ii) Receiver design which achieves 20 dB SNR 

under tactically significant conditions, and (iii) Transmit waveform with BW> 800 MHz. 

 

5.3.2 Information Flow and System Uncertainty  

The study of the effects of sources of uncertainty on system performance confidence while 

under control parameters cv   and in the presence of sensing uncertainty ( EV


, tV


) is of particular 

interest.  For a fully sampled signature process with negligible sampling uncertainty per (46), the 

FBIT method can be applied to study the independent sources of uncertainty.  The effects of each 

independent source of uncertainty can be studied at each link in the channel.  Equation (36) is 
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demonstrated for links X


, Y


, and Q under case 5 conditions defined in Table IV.  Under these 

conditions, three independent sources of uncertainty are introduced in the system under perfect 

training conditions.  An unknown bias in target aspect estimation and an unknown bias in leading 

edge range bias estimation are assumed.  The target range is also unknown and as such a third 

uncertainty in introduced in the SNR of the measured signature.  All assumed statistics 

associated with the uncertainties are as defined under case 5 of Table IV and as described in 

section IV.D.   

 

Using Monte-Carlo simulation L independent draws of an NM sample ensemble from X
 are 

generated.  The FBIT method is applied at each draw to generate the decomposition of the 

performance estimate reliability in (36) at X


, Y
 , and Q.  In Fig. 23 the cumulative link loss 

standard deviation defined in (24.a), (24.b), and (24.c) resulting from the sum of the independent 

three uncertainty sources is computed about the expected link information loss defined in (23.a), 

(23.b), and (23.c).  To clearly illustrate the level of agreement of the independent link loss 

contributions to the total produced by the joint simulation, the individual contributions to the 

cumulative link loss variance are individually plotted in an incremental fashion in Fig. 23.  Fig. 

23 shows that the sum of the independent uncertainty sources yields the same results as the 

Monte-Carlo simulation involving all three factors in a joint process.   

 

 

Fig. 23. Cumulative Channel Link Loss Variance, L=100, N=3*105 
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The corresponding impacts to the reliability in link performance can be generated through the 

application of Corollary IV and V.   The reliability in predicted link performance as quantified 

by Definition VI  resulting from the sum of the independent three uncertainty sources is 

presented in the error bars about the expected link performance defined in (31.a), (31.b), and 

(31.c).  The dashed line represents the results of the joint Monte-Carlo simulation where all three 

independent uncertainty factors are simulated simultaneously.  The results in Fig. 24 show 

clearly that the sum of the independent events equals the joint event, thus validating the 

assumption of independence in the three sources of uncertainty acting on the predicted 

performance risk.     

 
Fig. 24. Channel Mutual Information and Reliability in Link Performance, L=100, N=3*105 

 

In Fig. 25 a similar validation of the propagation of independent uncertainty sources is given 

for the reliability in predicted performance.  The example demonstrates that the use of Corollary 

IV and V to approximate the reliability on the performance estimate using the link loss variance 

is a very effective means to address the transcendental relationship underlying this method.  The 

data points marked with the asterisks represent the sum of the independent contributions to the 
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reliability in performance prediction.  The respective plotted lines represent the results of direct 

simulation at the specified link.   

 

 

Fig. 25. Reliability in Predicted Link Performance Given as Variance, L=50, N=3*105 

 

The implications of imperfect training are realized in the final stage of the channel at Q’ as 

shown in Fig. 24.  At Q’, Case 6 conditions in Table IV are used to present a naive training 

approach as developed in section IV.D.   

 

A summary of the expected link loss, expected link performance, reliability in link 

performance, and results of respective sampling uncertainty tests in Fig. 18 are given in Table 

VII below.  The reliability in predicted performance decreases as information propagates down 

the sensing channel.  The expected link performance also decreases in accordance with the 

principles of mutual information and the Data Processing Inequality.  Much of the decrease in 

reliability and loss in predicted performance and loss in performance comes at the feature 

extraction stage in the system.  The reduced reliability in performance prediction is most 

sensitive to the uncertainty factor of SNR.  The effects of the factors associated with target range 
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bias and pose estimate bias are of less significance relative to the total reliability in predicted 

performance.    

 

From Table VII it can be seen that gains in performance due to component design trades must 

also take into account the reliability level associated with predicted performance.   

TABLE VII                                                                                                                                                                                                                  
INFORMATION CONFIDENCE & LOSS BUDGET FOR VARIOUS 

L 
i 
n 
k 

Link Information Measure 
Link 
Loss, 
Bits 

Expected 
Link 

Performance 

Reliability in 
Link 

Performance 

Sampling 
Uncertainty 

Test 
H 0.0  --------  ---- ------ 

X


 ∆SILµ
=.05 XeP 

µ  = .013 
X


eP
σ = .003 














2

2
ˆ

X
Ne

X
Ne

P

P





σ

σ < .001 

Y


 ∆FILµ
=.35 YeP 

µ = .073 
Y


eP
σ = .0228 














2

2
ˆ

Y
Ne

Y
Ne

P

P





σ

σ <.003 

Q 
 

∆∆ILµ
=.16 QePµ  =.12 Q

ePσ = .0255 













2

2
ˆ

Q
Ne

Q
Ne

P

P

σ

σ <.006 

Q’ 
 ∆TILµ

=.04 Q'ePµ = .125 
'

ePQσ =.0266
 

---
 

 

In this example problem, changes within two significant digits of the expected performance 

should be studied in the context of the reliability of the performance estimates based on 

uncertainty factors introduced in the system. 
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6 CONCLUSION 

The FBIT method is developed for use in the research of information sensing applications.  

Measures are developed to identify information flow bottlenecks and to form an information link 

budget for system analysis.  Techniques for bounding asymptotic performance under sufficient 

sampling are characterized.  Test criteria are developed for controlling sampling uncertainty 

within the uncertainty propagation analysis approach.  Test criteria are linked to phase transitions 

within the typical set trajectory associated with the entropy estimation of high dimensional 

signature processes.  The FBIT method and test criteria are applied to an HRR radar numerical 

example.  The propagating effects of various sensing uncertainties on system performance are 

characterized at the component level.   
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